

ATHENS 22nd – 23rd March 2012 Robert GALLER

Contracts for Underground Constructions – the Austrian Practice

Introduction

In the Austrian tunnelling construction contract the first main rules are

- the ground belongs to the client and is his risk
- a unit price contract is used

Please keep these principles in mind for the following explanations!

Contracting practices

Contractual regulations **in tunneling** have to be different from other sectors of the construction industry because the **construction material**, the ground, **is not known exactly** until we do the underground construction!

Contracting practices – risk sharing

• General risk sharing for underground constructions:

- The ground belongs to the client and is his risk

 Means and methods for unchanged ground conditions (compared to the prognosis) are the contractor's risk Montanuniversität Leoben Chair of Subsurface Engineering Geotechnics and Underground Constructions Head: Univ.Prof. Dipl.-Ing. Dr.mont. Robert Galler

Contracts for Underground Constructions - the Austrian Practice

What about HARD **ROCK CONDITIONS ?**

HARD ROCK CONDITIONS

Leoben

Chair of Subsurface Engineering

- The typical sequence for conventional excavation is subdivided into top heading – bench – invert.
- The top half of the tunnel cross section is excavated first, the bench follows simultaneously a few hundred meters behind.
 A ramp is maintained on one half side of the cross- section to enable access to the top heading.
- The **invert** is prepared at quite **some distance to the bench** excavation.

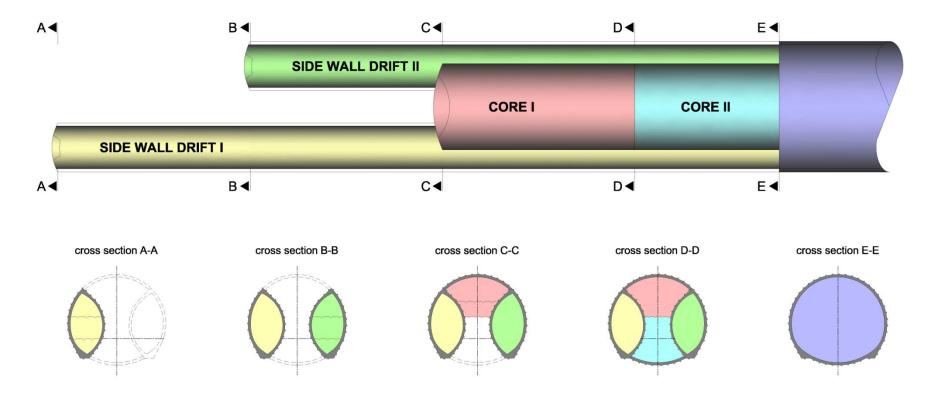
Contracts for Underground Constructions - the Austrian Practice

What about SQUEEZING ROCK CONDITIONS?

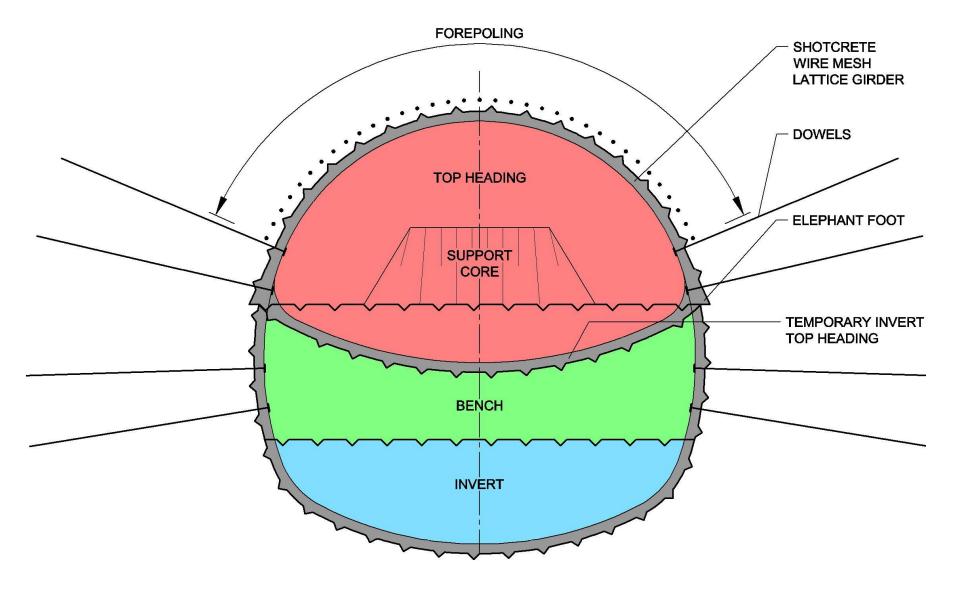
SQUEEZING ROCK CONDITIONS

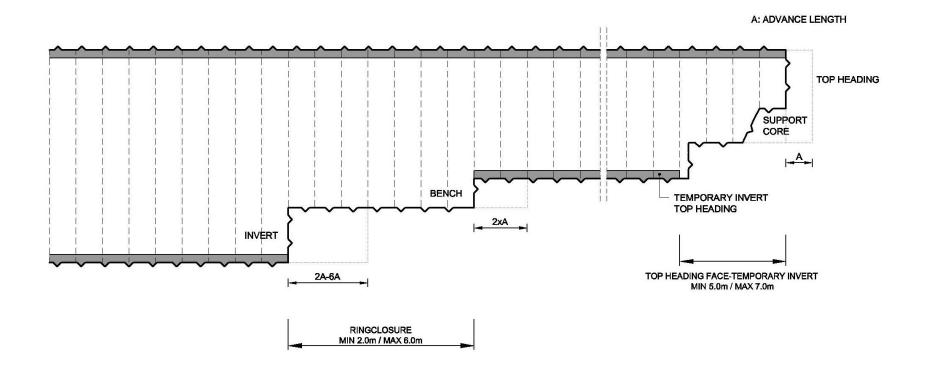
Subsurface Engineering


- As a reaction to failure of the shotcrete lining occuring during excavation due to large deformations longitudinal slots are left open in order to allow displacements without damaging the shotcrete.
- This approach is accompanied by a dense **rock bolting** to **increase the shear strength** of the rock mass and to reduce deformation of the tunnel.
- In the late nineties, **yielding elements** were developed, which have been integrated into the shotcrete lining.


S

Contracts for Underground Constructions - the Austrian Practice





SOFT GROUND CONDITIONS

ntanuniversität

Chair of **S**ubsurface Engineering

and Underground Constructions

Leoben

- Typically the length of excavation rounds in this example is limited to 1.0 m at a maximum and the closure of the invert follows after 5.0 m. The advance rate is restricted to 4.0 m in 24 hours to limit deformations of the young shotcrete primary lining.
- To allow excavation of a typically double-track tunnel, the groundwater level is lowered by a system of external wells. The tunnel cross section is **excavated in small portions** when tunnelling in gravel which comprises flowing layers of soil.
- Massive **support of the excavation face** with shotcrete and face anchors or even ground treatment by grouting ahead of the face is occasionally required to provide safe tunnelling conditions.

ARE GROUND INVESTIGATIONS NEEDED?

YES, OF COURSE!

Subsurface Engineering

- The geological investigations are the client's responsibility.
- The description of the ground is required for the elaboration of a **geological model**
- The characteristic properties of the ground must be reported in the **geotechnical model**
- The investigations should be planned and supervised by experienced geologists in close cooperation with the design engineer and the client.
- The elaboration of the geotechnical model is the **responsibility** of the **geotechnical engineer**.

PRINCIPLES OF NATM TUNNELLING CONTRACTS

Chair of Subsurface Engineering Geotechnics and Underground Constructions

- The theoretical basis for NATM is to conceive the ground around the tunnel not just as a load, but as a load-bearing element of support. In combination with the time-dependent development of ground reactions as a result of tunnel excavation, the type and quantity of the support elements required is systematically adjusted.
- The ground reactions, taking the form of lining deformations and lining pressures, are **measured** and the stability of the excavation is confirmed by **frequent monitoring**.
- Depending on the project conditions (e.g. shallow soft ground tunnel, deep rock tunnel) and the results of the geotechnical measurements, the **requirements** for a specific support are **determined**.

Normative document:

ÖNORM B2203-1: Underground works – Works contract Part 1: Conventional Tunnelling

<u>History</u>

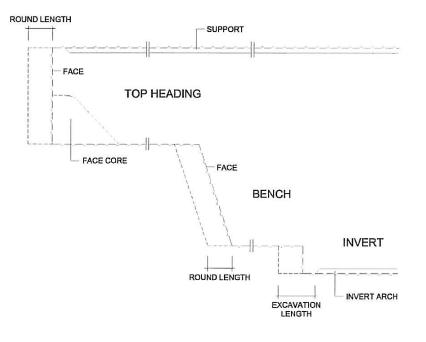
first issue: 1975 **Revisions**: 1983, 1994, **2001**

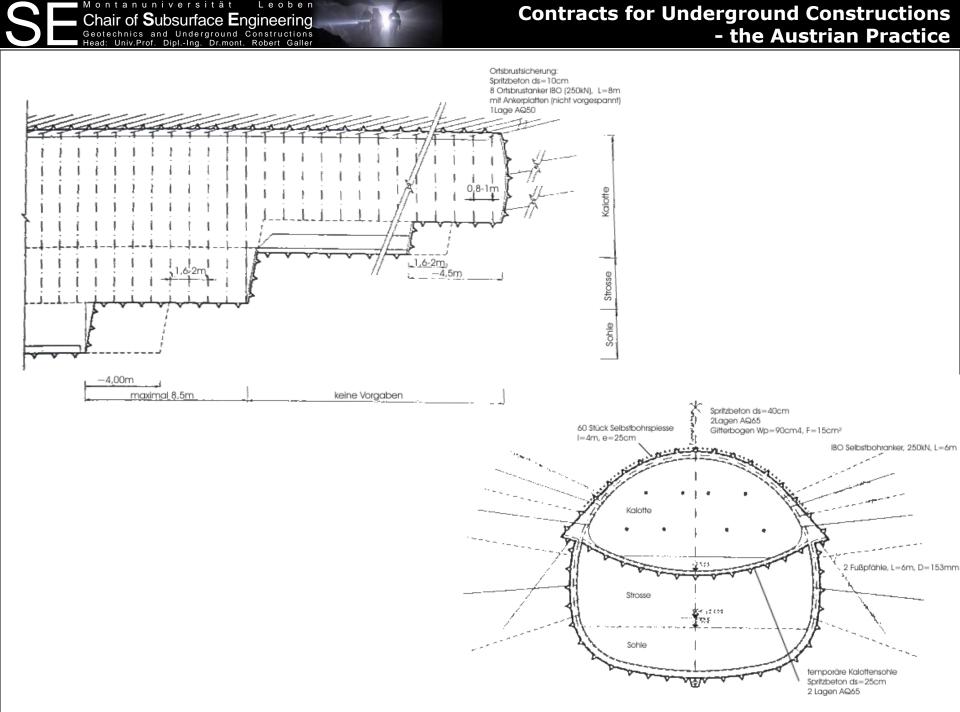
2001: Part 1 – conventional tunnelling 2005: Part 2 – continous tunnelling

Scope of ÖNORM B2203-1

Rules of Procedure
Terms of Contract


for the implementation of underground works using conventional tunnelling.


Does not apply to pipe jacking and tunnels constructed by open-cut methods.


Montanuniversität Leoben Chair of Subsurface Engineering Geotechnics and Underground Constructions Head: Univ.Prof. Dipl.-Ing. Dr.mont. Robert Galler

Cross Section

Longitudinal Section

Classification system

The classification system considers **two major factors**, which are decisive for advance rate and cost:

- Ground properties and ground behaviour during excavation
- Amount and type of supporting measures on the advance rate

Guideline for the preparation of Tender Documents and Bids - Definition of Tunnelling Classes

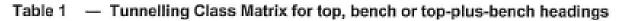
The matrix shall comply with the following principles:

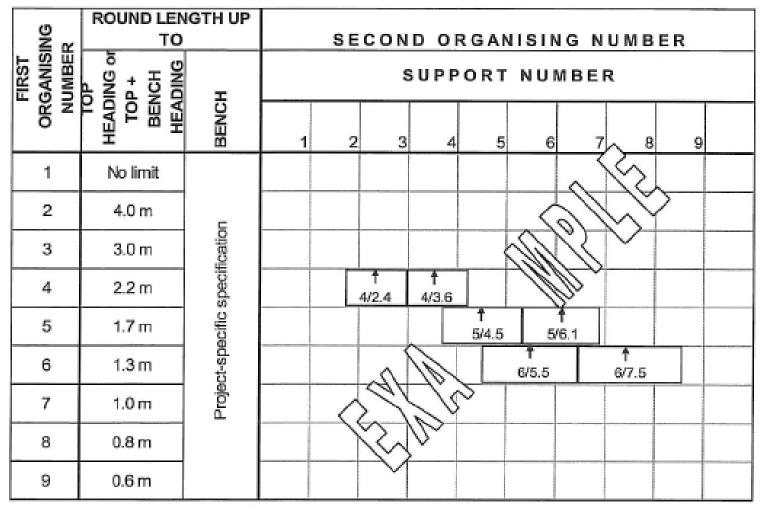
Subsurface Engineering

- First Organising Number: Subdivision of Top, Bench or Top-plus-Bench headings according to the round-length range
- Support and supplementary measures in the top, bench or top-plus-bench headings shall be rated with the Support Factor (calculated as Second Organising Number).
- The scope of the Second Organising Number shall be defined within limits.

Definition of Tunnelling Classes – Tunnelling Class Matrix for top, bench or top-plus-bench heading

Montanuniversität


Univ.Prof. Dipl.-Ing.


Chair of Subsurface Engineering Geotechnics and Underground Constructions

Dr mont

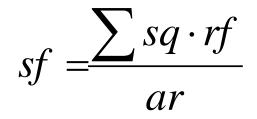
Leoben

Robert

Tunnelling classes = excavation and support- classes

The Matrix is defined and filled as follows:

- round length (1. Organising Number)
- support factor (2. Organising Number)
 - rating factors for each support element (indirectly reflecting the time necessary for installation)
 - rating area


of Subsurface Engineering

- result: single point => would lead to an infinite number of such "excavation points"
- support factors are delimited by a tolerance of +/- 0,35 to +/- 2,1, depending on the round length defining areas => excavation classes
- for each class the bidder supplies a unit price for excavation and a guaranteed advance rate (m/day)
- topheading, bench and invert separately

Special features of the classification of excavation

The **tunnelling classes** of top heading and bench are defined by **two characteristic values**.

One being the **round length**, the other being the **support factor (sf)**, which reflects the influence of supporting measures on the excavation rate.

Leoben

Chair of Subsurface Engineering

- rf ... rating factor
- sf ... support factor
- sq ... support quantity
- ar ... rating area

Construction contract – Rating factors

Support and additiona	al measures	Rating Factor	quantity					
		per quantity unit	unit					
Anchors and	Swellex or equal	0,8	m					
Rockbolts	SN Rockbolts	1,1	m					
	Selfdrilling Rockbolts	1,7	m					
	Grouted Tube Anchors	2,0	m					
	Rockbolts tensioned	2,5	m					
Faceanchors	Number of Anchors per Roundlength	8,0	PCS					
	Placement of Anchorplates without Tensioning	1,7	PCS					
	Placement of Anchorplates with Tensioning	5,0	PCS					
Spiles	driven Spiles	0,5	m					
	ungrouted Spiles	0,6	m					
	grouted Spiles	0,9	m					
	Selfdrilling Spiles	1,3	m					
	Grouted Tube Spiles	1,6	m					
Grouting more than 1	0 kg per m Anchor, Spile, Footpile	0,1	kg					
Steel mesh	exterior (rock) side with Arch	1,0	m²					
	interior (excavation) side with Arch	1,5	m²					
	exterior (rock) side without Arch	2,0	m²					
	Temporary invert ot Topheading	0,8	m²					
	Additional Reinforcement, Face Mesh Reinforcement	2,0	m²					
Arch and Dispatcher		2,0	m					
Shotcrete	Topheading and Bench	20,0	m³					
	temp. Invert of Topheading, Elephant Footing	12,0	m³					
	Face	14,0	m³					
	Filling of gaps and Overexcavation	14,0	m³					
Deformationsslots	withoutStress Controller	3,5	m					
	with Stress Controller	5,0	m					
Forepolingboards		5,5	m²					
Footpiles	Footpiles ∅ ≤ 38mm	4,5	m					
	Footpiles ∅ ≥ 38mm	5,0	m					
Sequences		22,0	PCS					
Excavation Elephantf	ooting	50,0	m					
	Demolition temporary invert of Topheading whilst Benchexcavation							

Definition of Tunnelling Classes Scope of Second Organising Number

Montanuniversität

Geotechnics

Chair of Subsurface Engineering

Dipl.-Ing.

and Underground Constructions

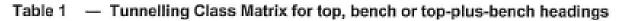
Dr.mont. Robert Galler

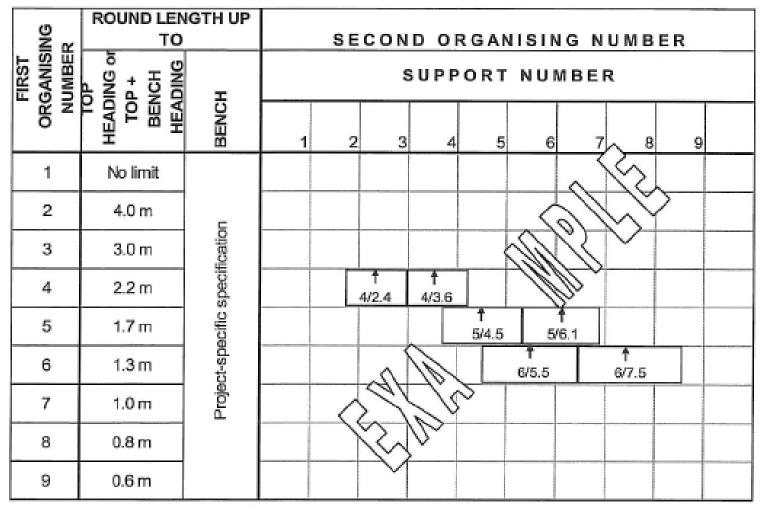
Leoben

Round Length Topheading	Maximum scope for second ordinal number (Support Factor) Topheading	Round length bench maximum	Maximum scope for second ordinal number (Support Factor) Bench		
no limit	+/- 0,35	no limit	+/- 0,45		
<u>4,0 m</u> 3,0 m	+/- 0,35 +/- 0,45				
2,2 m	+/- 0,60	3,0 m	+/- 0,70		
1,7 m	+/- 0,80	2 0 m	. / 1.20		
1,3 m	+/- 1,00	2,0 m	+/- 1,20		
1,0 m	+/- 1,30				
0,8 m	+/- 1,60	1,0 m	+/- 2,10		
0,6 m	+/- 2,10				

Definition of Tunnelling Classes – Tunnelling Class Matrix for top, bench or top-plus-bench heading

Montanuniversität

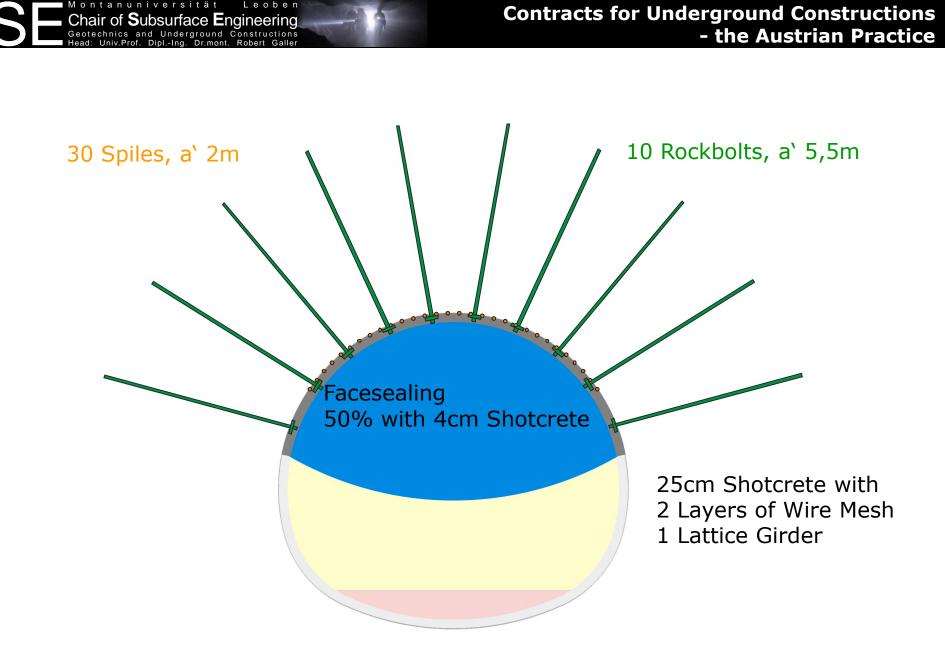

Univ.Prof. Dipl.-Ing.

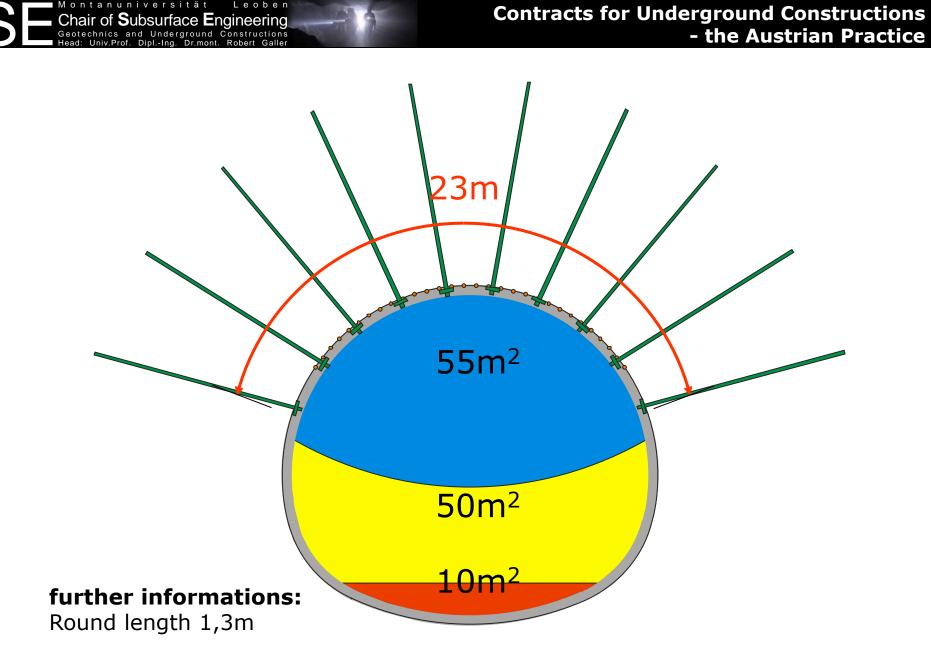

Chair of Subsurface Engineering Geotechnics and Underground Constructions

Dr mont

Leoben

Robert





Example:

Topheading of a typical two lane highway tunnel

Example Excavation Class

Leoben

- Round length
- Support and Reinforcement
 - 🗆 list

Montanuniversität

Chair of Subsurface Engineering

- quantity/linear meter tunnel
- rating factors
- 🗆 sum
- Rating Area
- Determination for every design drawing
- Separate determination for each Topheading, Bench and Invert

Construction contract – Example

Support/Round length (RL)			Quantity/n	n Tunnel		Factor	Factor Sum		
Shotcrete thickness (theo.)	0,25	m	23,0 × 0,25 × 1,0	5,75	m³	20,00	5,75 × 20,0	115,00	

Support - Shotcrete								
Shotcrete thickness	0,25 m							
Line 1a	23,00 m							
Rating Factor (ÖNORM B2203-1)	20,00							
Quantity/m Tunnel	5,75 m³							
Sum	115,0							

Quantity / *lfm* = $23,0 \times 0,25 \times 1,0 = 5,75$

 $Sum = 5,75 \times 20 = 115$

Construction contract – Example

Support/Round length (RL)			Quantity	/m Tunnel		Factor	Sum		
Rockbolts Swellex (RL)	10,00	Pieces	(10 × 5,5)/1,3	42,31	m	0,80	42,31 ×0,8	33,85	

Support - Rockbolts								
Rockbolts	10 Pieces							
Bolt length	5,50 m							
Round length	1,30 m							
Rating Factor (ÖNORM B2203-1)	0,80							
Quantity/m Tunnel	42,31 m							
Sum	33,85							

Quantity / lfm =
$$\frac{(10 \times 5,5)}{1,3}$$
 = 42,31
Sum = 42,31 × 0,8 = 33,85

Construction contract – Example

Support/Round length (RL)			Quantity/	'm Tunnel		Factor	m	
Shotcrete thickness (theo.)	0,25	m	23,0 × 0,25 × 1,0	5,75	m³	20,00	5,75 × 20,0	115,00
Facesupport (RL)	0,04	m	(0,04 × 55,0 × 0,5) / 1,3	0,85	m³	14,00	0,85 × 14,0	11,85
% of Face	0,50	Top- heading						-
Wire mesh CQS 6	2,00	Layers	1,0 × 23,0 × 1,0	23,00	m² (ext.+Arch)	1,00	23,0 × 1,0	23,00
			1,0 × 23,0 × 1,0	23,00	m² (int.+Arch)	1,50	23,0 × 1,5	34,50
Arch (RL)	1,00	Pieces/RL	(1,0 × 23,0)/1,3	17,69	m	2,00	17,69 × 2,0	35,38
Rockbolts Swellex (RL)	10,00	Pieces	(10 × 5,5)/1,3	42,31	m	0,80	42,31 ×0,8	33,85
Bolt length	5,50	m						-
Spiles grouted (Round length)	30,00	Pieces	(30 × 2)/1,3	46,15	m	0,90	46,15 × 0,9	41,54
Lentgh of Spiles	2,00	m						
Sum								295,12

Calculation Excavation Class									
Round length	1,30	1. Ordinal Number		6,00					
Line 1a	23,00								
Topheading Area	55,00	2. Ordinal Number	295,15 / 55,00	5,37					
Support	295,12								

Construction contract – Example Excavation Class Matrix

- First Ordinal Group: Round Length
- Second Ordinal Group: Support Factor

		Round lengt	h maximum		SECOND ORDINAL NUMBER									
ORDINAL		ING +			SUPPORT FACTOR									
FIRST OR	NUMBER	TOPHEADING or TOPHEADING BENCH	BENCH	1	2	3	4	5	6	7		8 9		
	1	no limit						d Length	second	num scope ordinal nur	nber	Round		Maximum scope for second ordinal number
	2	4,0 m	ç					heading	Т	port Facto opheading	r)	bench ma	aximum	(Support Factor) Bench
	3	3,0 m	proje				4	o limit I,0 m		+/- 0,35 +/- 0,35		no li	mit	+/- 0,45
	3		ch					8,0 m 2,2 m		+/- 0,45 +/- 0,60		3,0	m	+/- 0,70
	4	2,2 m	r ea				1	.,7 m .,3 m		+/- 0,80 +/- 1,00		2,0	m	+/- 1,20
	5	1,7 m	is to be determined for each project				0	.,0 m),8 m),6 m		+/- 1,30 +/- 1,60 +/- 2,10		1,0	m	+/- 2,10
	6	1,3 m	eterm						† 5/5,37					
	7	1,0 m	o be d											
	8	0,8 m	is to					1,0) — 1,0	, 				1
	9	0,6 m]

Construction contract - Excavation Class Matrix Rock Tunnel, double track railway tunnel

e szahl	Abschlagslänge bis	Zweite Ordnungszahl				
Erste Ordnungszahl	Kalotte	Stützmittelzahl 1 2 3 4 5 6 7 8 9 10 11 12 13 14				
1	keine Vorgabe					
2	4,0m	F2 3/1,65				
3	3,0m ^{0,90 - 1,80} 1,20 - 2,10					
4	2,2m 0.80 - 2.00 1,94 - 3,14					
5	1,7m ^{1,21 - 2,81} 2,76 - 4,36					
6	2,54 - 4,54 1,3m 3.85 - 5,85 5,56 - 7,56					
7	4,34 - 6,94 1,0m 6,41 - 9,01 8,74 - 11,34					
8	0,8m					
9	0,6m					

Construction time and time dependent costs

Construction contract

Generally the **time** required for excavation and support as well as the additional time required because of delays such as water hindrances is kept **variable**.

In his offer the **contractor** has to indicate **advance rates for each excavation class** and **rates for reductions** due to hindrances, all of which he has to guarantee.

The adjusted construction time is the **basis for the compensation** of all time dependent costs.

Construction time

- Having available rock mass types the **tunnelling classes** (excavation and support) will be derived. The distribution of the tunnelling classes along the tunnel alignment is based on the geotechnical data from the site investigations.
- For each tunnelling class the necessary **excavation time** can be calculated. This gives an excavation velocity in meter per month and shall be a contractual component.
- The summation of the excavation time of all tunnelling classes gives the **total excavation time for the tunnel**.

Construction contract

Top-heading, 2lane, falling driving, soil						
EXCAVATION CLASS	Length	V _{VT}	Duration	VT-Duration		
	m	lm/d	days	month		
	а	b	c=a/b	d=c/28		
L-DR 5/4,38	133,25	5,70	23,38	0,83		
L-DR 5/5,70	43,00	5,20	8,27	0,30		
L-DR 5/7,02	12,00	4,63	2,59	0,09		
L-DR 5/8,61	19,00	4,23	4,49	0,16		
L-DR 5/10,03	9,50	3,75	2,53	0,09		
L-DR 6/6,48	62,50	4,53	13,80	0,49		
L-DR 6/8,21	52,50	4,17	12,59	0,45		
L-DR 6/9,94	83,25	3,77	22,08	0,79		
L-DR 6/13,12	80,00	2,83	28,27	1,01		
L-DR 7/8,90	29,00	3,63	7,99	0,29		
L-DR 7/11,37	28,50	3,27	8,72	0,31		
L-DR 7/13,96	15,00	2,90	5,17	0,18		
L-DR 7/18,64	95,00	2,23	42,60	1,52		
L-DR 7/20,88	20,00	2,10	9,52	0,34		
Subtotal	682,5		192,00	6,86		

Construction time

The **encountered** tunnelling class distribution will be different from the **assumed** distribution.

- That means the **excavation time may be different** compared with the time based on the tunnelling class distribution as proposed in the **tender drawings**.
- The **advantage of this model** is that both the contractor and the client shear the risk of additional costs which results from the deviations between the prognosis in the tender documents and the encountered geological conditions.

THEORETICAL construction time

Subsurface Engineering

Each individual **tunnelling class** requires a certain amount of time for excavation and installation of supporting measures, as defined.

The application of the assessed progress rates for the predicted tunnelling class distribution yields a **theoretical construction time** for the tunnelling works.

ACTUAL construction time

- With the documentation of **actual rock classification** the initial theoretical construction time is adjusted and any difference will be used for re-definition of the target dates and for reimbursement of corresponding payment items.
- **Continuous monitoring** of the progress with respect to the theoretical construction time allows to allocate the cause of delays.

ACTUAL construction time

Due to the actual tunnelling classes the **actual construction time** may be extended and reimbursement of corresponding **payment items will be adjusted**.

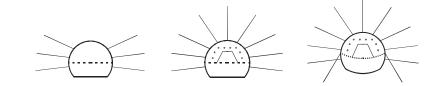
In the used model where **payment is time dependent** both the contractor and the client shear the risk of the actual underground conditions which may differ from the predicted geological assessments.

Recalculation of the actual construction time is based on the excavation progress rates (excavation velocity) which are specified by the contractor as a contract component.

Payment of additional construction time

Montanuniversität

Chair of Subsurface Engineering


and Underground Constructions

Leoben

The additional time dependent **costs have to be paid by the client only** if the reason for the longer construction time belongs to the owner's risks.

The inability of the contractor to perform under prescribed contractual conditions is **no reason for additional payment**.

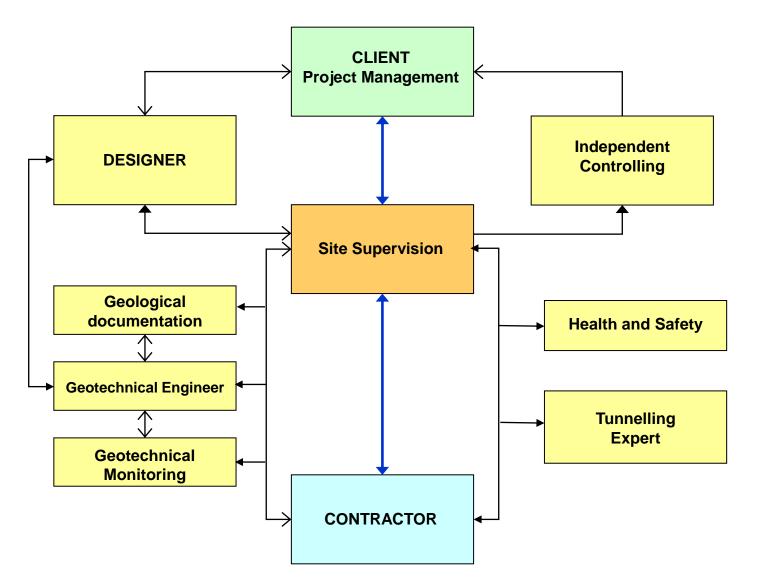
Construction contract – Example – Excavation Period

Tender

	VKL 1	VKL 2	VKL 3	Summe
Tender (prognosis)	100m	100m	100m	300m
Bidder: Advance Rate	10 m/d	5 m/d	1 m/d	
Excavation Period	10 days	20 days	100 days	130 days

time dependent costs, total

1.300.000 € for 130 days = 10.000 €/d


Accounting

	VKL 1	VKL 2	VKL 3	Summe
actual length (Ist)	140 m	80 m	80 m	300m
Bidder: Advance Rate	10 m/d	5 m/d	1 m/d	
Excavation Period	14 days	16 days	80 days	110 days

time dependent costs, total 10.000 €/d for 110 days = 1.100.000 €

Organisation

Thanks for your attention!